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Phase Transition in a Four-Dimensional Random Walk 
with Application to Medical Statistics 
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A random walk in a piecewise homogeneous medium can exhibit a variety of 
asymptotic behaviors. In particular, it may lodge strictly in one region or divide 
in probability among several. This will depend upon the parameters describing 
(a) the walk, (b) the interregion boundary, and (c) the initial location of the 
walk. We analyze from this point of view a special four-dimensional walk on an 
integer lattice with two homogeneous regions separated by a hyperplane of 
codimension 1. The walk represents a continuing sequence of clinical trials of 
two drugs of unknown success probabilities and the two regions represent the 
Bayes-derived criterion as to which drug to try next. The demarcation in the 
parameter space of success probabilities and initial coordinates between one- 
and two-region asymptotics is mapped out analytically in several special cases 
and supporting numerical evidence given in the general case. 

KEY WORDS: Phase transition; random walk; integer lattice; clinical 
trials; piecewise homogeneous. 

1. INTRODUCTION 

The subject of time-invariant random walks on a spatially homogeneous 
lattice is a very old one. If only finitely many prior steps must be 
remembered, such a walk is equivalent to a spatially homogeneous Markov 
chain and is routinely solvable in most cases. (~) Spatially inhomogeneous 
random walks have recently received much attention, primarily associated 
with lattices representing random media, and the possibility of qualitatively 
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different walks occurring under change of lattice parameters noted. (2) In 
this paper, we shall consider the simplest possible inhomogeneity--a piece- 
wise homogeneous lattice of just two pieces--and show that here, too, the 
type of walk can change discontinuously with lattice parameters--a kind of 
phase transition. In fact, the model we focus on will show something much 
closer to the traditional phase transition of thermodynamics: a single phase, 
followed by two mixed phases, and then a second single phase under 
variation of system parameters. 

The structure of the paper is as follows. We first consider a problem in 
the statistics of clinical trials that motivated the investigation, define an 
"ethical" strategy for such trials, and introduce some criteria for assessing 
the qualitative nature of the resulting four-dimensional random walk. We 
then examine in greater detail the dependence of the walk on system 
parameters. A highly simplified one-dimensional model is set up to show 
the genesis of the phase transition, and its relation to the more involved 
four-dimensional model indicated. At this stage, the discussion becomes 
more quantitative. A generating function for the general problem is intro- 
duced, and it is shown how the piecewise continuity can be accounted for 
by an appropriate "tag"--an additional independent variable. This tech- 
nique is applied to the prototype one-dimensional model, to a treatment 
criterion recently analyzed by Bechhofer, and finally to special cases of the 
"ethical" testing procedure that supplied the original motivation. 

2. CLINICAL TRIALS CONTEXT 

A basic problem in applied pharmacology is that of distinguishing the 
relative effectiveness of drugs to be used for a given ailment. This is 
generally done by means of a sequence of clinical trials in which the drugs 
are given randomly to patients and the results compared. The longer the 
sampling period, the more rational a decision may be made, but the more 
carefully the tests must be designed to reduce the number of inappropriate 
treatments during the testing. For this purpose, a stopping rule may be 
imposed to terminate the trials when sufficient information is amassed. 
Alternatively, and this is the case we will emphasize, the information 
amassed can be used to select the course of the treatments, which then 
never leave the "testing" period. (One thereby pays no attention to the 
financial costs of accumulating, processing, and conveying data.) 

The highly idealized situation we consider is as follows. (3) A sequence 
of equivalent patients present themselves. Each one is treated by one of two 
drugs A or B, and the unequivocal result, success or failure, is known 
before the arrival of the next patient. The drugs have fixed but unknown 
success probabilities PA, P~, failure probabilities qA, q~- Suppose that the 
information available at the arrival if a patient consists of A, the number of 
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times drug A has been previously tried, resulting in success, the comple- 
mentary number of failures a, and the corresponding quantities B, b for 
drug B. We then define a treatment protocol by means of a treatment 
function T( A, B, a, b) with the instructions 

> 0 treat with drug A 
T(A, B, a, b) < 0 treat with drug B (2.1) 

= 0 flip a coin to decide on A or B 

Putting it another way, the drug A is to be tried with a probability 

P(A) = O( T(A,B,a,b))  (2.2) 

where 

O(x) = �89 + sgnx) 

We now wish to assess the statistics of the sequence of treatments, and 
its dependence upon the unknown parameters PA, PB" At least two qualita- 
tive figures of merit for the function T(A,B, a, b) come to mind: (i) the 
difference between max(p a , p~) and the probability of success for the Nth 
patient when the protocol is followed, and (ii) the corresponding difference 
between max(p A, p~) and the mean success rate for the full anticipated 
population of N patients (the so-called patient horizon). When (i) is the 
primary desideratum, we speak of the protocol as being "ethical, ''(4) i.e., no 
patient is a guinea pig, being used solely to collect information for the 
benefit of his successors. A key question is how well (i) also satisfies the 
global criterion (ii). Of course, the way this trial procedure has been set up, 
the testing continues forever, presumably with an increasing use of the 
better drug, and hopefully with its relative frequency approaching unity, in 
which case T has been called "asymptotically optimal. ''(sl We will not in 
this paper pay attention to the possibility of invoking a "stopping rule, ''(6) 
in which case a decision is made at some point that, e.g., drug A is superior, 
and it is used thereafter. 

The process we have been discussing is a random walk on the nonneg- 
ative octant of the four-dimensional integer lattice (A, B, a, b). At each step, 
one and only one of the coordinates is increased by unity: 

AA = 1 with probability PAl if A is tried 
Aa = 1 qA ) (2.3) 

1 with probability if B is tried 
1 qe 

distribution on this lattice is P(A, B, a, b), normalized so 

_ ~ P(A,B,a ,b)  = 1 
{A,B,a,b[A+B+a+b=N} 

(2.4) 
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then the development of P(A, B, a, b) clearly satisfies 

(pAPa + qAAa)[O(T(A,B,a,b))P(A,B,a,b)] 

+(psAs  + qsAs)[O(T(A,B,a,b))P(A,B,a,b)]  

= ~(A,S,a,b),(O,O,O,O) 

where 

(2.5) 

A~f(x) ~ f ( x )  - f ( x  - 1), 0 (T)  ~ 1 - O(T) (2.6) 

This is a piecewise homogeneous random walk with constant coefficients in 
the region T(A, B, a, b) > 0, and a different set of constants when T(A, B, 
a, b) < 0. The boundary behavior is rather involved, and this is the nub of 
the analytic difficulties. 

3. PHENOMENOLOGY 

From the point of view of our initial motivation, a convenient quantity 
with which to assess the global character of the walk is the mean number of 
excess failures in the first N steps. If PA /> Ps, this is 

CN = E XNP(A,B,a,b) (3.1) 
A + B + a + b = N  

where 

X N  = a + b - NqA (3.2) 

It is also given by PA -- PS times the mean number of times B is tried in the 
first N trials: 

CN = (PA - P s )  ~ O(T(A,B,a ,b))P(A,B,a ,b)  (3.3) 
A + B + a + b < N  

For more incisive information, we may also want to consider the corre- 
sponding variance 

02N = ~ X2NP(A, B, a, b) - C2N (3.4) 
A + B + a + b = N  

Now let us specialize to an "ethical" protocol that has been examined 
in fair analytic and very extensive numerical detail (a) It is that in which a 
Bayes estimator is constructed for PA - P s ,  the difference of the unknown 
success probabilities, based upon the results (A,B,a, b) of the previous 
trials. For PA, one has the estimator 

y f ~ p2 + ~pff q~ qb fo( pA , Ps ) ap~ des 
(3.5) 

OA = f f~P~Pffq~q~fo(PA , ps)dpA dps 
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and similarly for ps .  Matters simplify materially if the a priori joint distri- 
bution fo(PA, Ps) is taken as a product of independent identical /3- 
distributions controlled by parameters e and f: 

(e + f + 1)! )2he.frier J 
fO(PA , fiB) = e! f!  rAUArBUB 

in which case one has the estimator 

(3.6) 

A + e +  1 B +  e +  1 (3.7) 
O A - - O B = A + a + e + f + 2 - -  B + b + e + f + 2  

The bias (e, f )  is seen to be equivalent to an unbiased a priori, e = f = 0, 
where one starts not at the origin of the lattice but at the point (e, e, f, f). 
One now of course tries A, or B, or flips a coin, according to OA -- PB > O, 
< 0, or = 0, and this is equivalent to the treatment function 

T ( A , B , a , b ) = ( A  + e + l)(b + f + l ) - ( B  + e + l)(a + f + l) (3.8) 

which is the case we now consider. 
The walk determined by (2.5) T given by (3.8) has been analyzed 

algebraically and by extensive computer simulation, (4) mainly from the 
point of view of its asymptotic large N behavior. We can distinguish two 
major asymptotic forms of the walk: 

(i) Coo = lim C N is finite, 
N - - ~  

(3.9) 
(ii) c~ = lira C~ / N > 0 

N--> oo 

corresponding, respectively, to saturation of mean excess failures, and to a 
constant failure rate no matter how long the testing, a most inappropriate 
situation in the context of clinical trials. An intermediate asymptotic form 
will also appear. 

Let us start with a special case of (2.5), (3.8), simple enough to be 
solved analytically. It is that in which the a priori distribution is unbiased, 
e = f = 0, and the unknown probability PA in fact has the value 1. The 
solution that is to be found in Section 8 then yields a finite value of Co~ 
only in the interval 0 < PB < 0: 5, while in the interval 0.5 < P c  < 1, it is the 
failure rate coo that is finite (although small: coo < 0.072). Thus, (see Fig. 1) 

__ q~ 1 
C~ (qB + 1)(2q, - 1) ' 0 < p ,  < ~ (3.10) 

qB(�89 1 <pB < 1 c ~ -  1 - ~ q ~  ' -~ 
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Fig. 1. 

.9 / 
~m 

0 

e = 4 : = o  

�9 5 i 

Limiting number of failures, Co., and failure rate, c~, for unbiased trials with PA = 1. 

(it can also be shown that limN_+~ CN/N 1/2-- �89 I/2 atp8 = 1/2)  and 

there is a phase transition between two distinct asymptot ic  forms at 
p~ -- 0.5. 

Fur ther  characterization of these forms is helpful. F r o m  the same 
analysis we find as N---) 

o N = 0 (1 ) ,  

1 ,,7 ~ l / 2  
0 u ~ NqB (1 _ qB/1 _ 5u~l , 

In  case (i), the excess failure number  

Xu = a + b -  NqA 

0 < / ) 8  < 1 /2  
(3.11) 

1 /2  < p B  ~< 1 

(3.2) 
settles down to a distribution of finite mean  and variance. But in case (ii), 

1 
- qB 

E ( x / N ) ~ q B  1 - �89 
(3.12) 

~ qB(1/-2--  qJ ) ' / 2 1  - �89 

This is consistent with a b imodal  distribution p(x /N) :  A is selected with a 
mean  failure rate x / N  = 0, or B is selected with x / N  = q8 ; the former  
occurs With a probabili ty 1 - / 3 ,  the latter with/3,  and the trapping ratio is 

� 8 9  
/3 - 1 - �89 (3.13) 

In  fact, the description is true, and so there is literally a transition f rom the 
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Fig. 2. Probability distributions p of mean failure rate x/N for various values of PB, in 

unbiased trials with PA = 1. 

distribution concentrated in A-phase to one divided between A and B- 
phases as one passes theps  = 0.5 mark (Fig. 2). 

The controlling parameters e and f, as the a priori bias towards success 
or failure, can now be altered. We have noted that this is equivalent to 
merely changing the origin of the walk. Nonetheless, this changes the 
nature of the system and hence the location of the transition. It  will be seen 
that a bias towards success constrains the constant failure rate region 

PA = 1 bias(e ,0) :PBtr . --  e + 1 (3.14) 
e + 2  

which of course is desirable in the clinical trials context. 
Now proceeding to the general case OfpA =A 1, there will be a transition 

curve, above which the mean failure rate approaches a nonzero cons tan t - -  
a fraction of the popula t ion- -but  below which the total number  of failures 
is bounded as the process goes on to infinity. The exact analysis is very 
complicated, see Section 7, but extensive computer  simulations (4~ have 
been done. Typical results are shown, first in the no-bias case, with a 
schematic indication of the asymptotic relative frequencies of testing with A 
or B in the various regions. As one traverses a path in (PA, Ps) space, one 
makes the transition from pure A-phase, to two-phase, to pure B-phase. 
The effectiveness of bias towards success is also shown, in which the 
C o = oo region is greatly contracted, indicating a potentially practical 
procedure (Figs. 3 and 4). 
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Fig. 3. 

Fig. 4, 

'1 / /J j 

  l jj/JJ  
o i 

e = + ' = O  

Relative frequencies of testing A and B, for typical points in (PA, fiB) plane, in 
unterminated unbiased trials. 

e = l O  , -F=O 

Limiting number of excess failures for unterminated trials with bias e = 10, f = 0. 

4. ONE-DIMENSIONAL EXAMPLE 

We have indicated that the phase t ransi t ion in our four-dimensional  
walk is most  easily expressed in terms of the asymptot ic  par t i t ioning of the 
walk between O(T)> 0 and  8(T)< 0, with a ratio 1 - f l : f l .  Indeed  we 
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I 
Fig. 5. 

) 

Piecewise homogeneous one-dimensional walk. 

763 

have 

c~ = (PA - p , ) B  (4.1) 

where the trapping probability is/3 = 0 in case (i) of (3.9). But we do not 
have to go to four-dimensional space to observe this effect. Consider the. 
following one-dimensional walk on an integer lattice. (7'8) A move is a unit 
step to the left, or right, with probabilities qA, orpA, when x > 0, butpB,  or 
qB, when x < 0, so that the medium is piecewise homogeneous unless 
qB =P,~. Any rule can be used for a move f rom the origin. This walk has a 
much simpler phase diagram, intuitively obvious when one realizes that the 
mean drift per step is P.4 - qA (or p~ - qB), permitting a diffusive peak to 
escape from the origin only if PA - qA > 0 (or PB - q~ > 0). The detailed 
form of the l imit ing--or  asymptotic---distribution is easy to find. It de- 
pends on a, the fraction of the walk lodged on the right hand, with 
/3 = 1 - a on the left. There is then a single diffusion process when a = 0 or 
13 = 0, in the regions shown, a superposition of the two when a/3 > 0, and 

Fig. 6. 

~/2 

I 
o(=0 

i l 

~R >o 

I 

o I/2 

~f~>o 

I I i 
I 

~=0 

I L 

(pA, PB) dependence of relative frequencies of remaining on left or right half line for 
walk of Fig. 5. 
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singular cases, e.g., 

P~(x) ~ (p/q)lXl-1 when PA = PB = P < 1 (4.2) 

on the boundaries of these regions. 
The one-dimensional walk is in fact isomorphic to the two-dimensional 

walk shown, which is an obvious prototype of the four-dimensional case. 
Here, A denotes the number of steps to the right, B the number upward, 
and there are two homogeneous regions on opposite sides of the diagonal, 
which serves as boundary. The one-dimensional image simply chooses 
x = A - B. If, e.g., PA > P~, the walk may likewise be characterized by the 
relative success rate A - B, and it will drift strictly below the diagonal if 
both qA/P~ andpe/qe are less than unity, the slope of the diagonal. 

Our qualitative arguments, it must be observed, do not depend at all 
on the discrete nature of the lattice medium: any passage from top to 
bottom must hit a boundary point, and a continuous description is quite 
adequate, except for numerical details. Matters need not be this simple. 
Suppose that the boundary between the regions is given instead by A = 2B. 
Then the lattice points on the boundary, the solid circles, are not the only 
points one can pass through to cross the boundary. They are joined by the 
even more numerous open circles, an effect which increases with further 
decreasing rational slope, and becomes even more complex with in'ational 
slope. But this is precisely what happens in our four-dimensional random 

B 

) 

A 
Fig. 7. Two-dimensional walk isomorphic to that of Fig. 5. 
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* �9 | �9 

| �9 | �9 

A 
The lattice points of the interregion boundary A = 2B can be both on, �9 or 

adjacent to, Q,  the boundary line. 

walk: the dividing plane 

(A + e + 1)(b + f +  1) = (B + e + 1)(a + f +  1) (4.3) 

has an unknown rational tangent insofar as the pair (A, a) is concerned. 
Nonetheless, it is possible in limiting cases to use continuum methods to 
approximate the solutions, and this is now being carried out. 

(8,b) / 

(A,a) 
Fig. 9. Lattice points of the interregion boundary (4.3) are scattered on and near the 

hypeTNane (4.3). 
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5. TECHNIQUESmTWO-DIMENSIONAL PROTOTYPE 

To illustrate analytic methods available for the solution of piecewise 
homogeneous walks, we start with the elementary case of the two- 
dimensional walk of Section 4. A standard method of treating a homoge- 
neous walk is to set up a generating function for the probability distribution 
of the Nth step. Here, we must have A + B = N, so that 

Y~ eA~= 1 (5.1) 
A + B = N  

but it will be convenient to define a generating function for the complete 
set of probabilities 

P(z,  y)  = ~ PABZAy B (5.2) 
A,B 

The two regions of this walk are identified by the sign of A - B, so we 
further introduce a "tag" t to make this distinction, and write 

e ( z ,  y, t) = Y~ P ~ z ~ y ~ t  ~ - 8  (5.3) 
A,B 

Let us see how (5.3) is employed. To start, we have to define the 
transition probability for the walk, and in conformity with the picture, Fig. 
7, this will be taken as 

PAB = [ p .O(A - 1 - B )  + qBO(A - 1 -- B ) ]PA_,, ~ 

+[qAO(A + 1 -- B)  + p . O ( A  § 1 - B)]PA,B_ , + 6(A,B),(0,O ) (5.4) 

Now introduce the MacLaurin and Laurent parts of P(z, y, t) with respect 
to t, 

P(z,  y , t )  = P ' ( z ,  y , t )  + e2(z ,  y , t )  

where 

P' (z ,  y , t )  = ~.  O(A - B)PABZAy~t A-8  
A,B 

P2(z, y,  l / t )  = ~,  O(B - A)PABzAySt A-B 
A,B 

(5.5) 

These identify the two uniform regions of the lattice, and (5.4) goes over to 
the generating function equation 

Pt(z ,  y , t )  + P2(z, y, l / t )  = (pAZt + qAy / t )P l ( z ,  y , t )  

+ (qBzt + p B y / t ) P 2 ( z , y ,  1 / t )  + 1 (5.6) 
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o r  

(1 - p . , z t  - q ~ y /  O e ' ( z ,  y , t )  + (1 - qBzt  - p B y / t ) e 2 ( ~ ,  y ,  1 /  t) = 1 

(5.7) 

The equation (5.7) is very much typical of those that we will meet in 
more general cases, and can be solved by very similar tricks. We multiply 
by t and take the MacLaurin part. Since P 2 has only nonpositive powers of 
t, this yields 

(t - PA zt2 -- qAY) P 1( z, Y, t) = a' + fl ' t  + ~/t 2 (5.8) 

for suitable a', fl ' ,y' .  Now since ~+~=~vPAB = 1, it is easily seen that 
P l ( z , y , t )  is analytic in t for It] < 1 when ]z I < 1, lyl < 1. Since t --pAzt 2 -- 
qAY has the two roots 

t,_+ - 2 /az  [1 +_(1-4pAqayz)  '/2] (5.9) 

with It1_ I < qAlYl < 1 (but Itl+ [ > l), a '  + fl ' t  + ~,'t 2 must have the factor 
t - t l _ .  Hence (5.8) takes the form 

~,' + ~'t (5.10) Pl(z '  Y ' t ) -  t -  q+ 

In exactly the same way, ( l / t ) -  q~z - p B y ( 1 / t )  2 has the two roots 

1/t2 + _ 1 _ 2 p B y [ l + _ ( 1 - 4 p ~ q B y z )  '/2] (5.11) 

and we must have 

N" + ~ " / t  (5.12) PZ(z, y, 1 / t )  - 1 / t -  l / t2+ 

The parameters 7V, ~",/z' ,/z" are now determined by substituting (5.10) 
and (5.12) into (5.7), and using the fact, from (5.5), that 

e '(z, y, o) = e 2(z, y, o) (5.13) 

Doing so, we find after some algebra 

~ '= t l+ /D ,  I~'= q~/flAD 

X" = l / t2+ D, /H' = qA/flBD 
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where 

) D ( y , z )  = t~_  - 1  --t2+ +pAztl+ 

qB + PA 
[ qA -- PA -- (1 -- 4pAqAyz) '/2 ] 

27~ 

+ q~ +?_____!~[q_e,_(l_4p~q~yz),/2] 2p. 

and hence conclude that  

(5.14) 

e ' ( z ,  y , t )  = (q . /?~) t  + t,+ 1 (5.15) 
t -  ti+ D ( y , z )  

e2(z,  y, 1 / t )  = (qA/PA)(1/t)  + ( l / t 2 + )  1 
( l / t )  - ( l / t 2 + )  O ( y , z )  

Consider the asymptotic  distribution in x = A - B for large N = A + 
B. For  this purpose, we need the smallest singularity or singularities (in 
absolute value) in z of 

P l ( z , z , t )  = 2PABZ'~+"t A-~ (5.16) 

and similarly of P2(z,z,  l / t ) .  There are several possibilities. First, if Pa 
< 1/2, p8 < 1/2,  then pA -- q~ < 0, pB -- q~ < 0 and the walk drifts to the 
origin in the one-dimensional  version, or to the diagonal in the two- 
dimensional case, f rom both sides. Now the minimal singularities are 
simple poles at [z] = 1: D(1, 1) = D ( -  1, - 1) = 0. Thus  

D(z , z )P~(z , z , t )  [ 1 
e'(z,z,O=- FT D-- ,6 - 1 z 

D(z'z)Pl(z'z't)" - : " : z= ~ z  + " ' "  (5.17) 
O / O z W ( z , z ~  1 + 

- 1  

leading to the required generating funct ion 

P~v(t) = coefz  N in Pl ( z , z , t )  

(q~ - ?A)(q, - ? , )  [ 

+ �9 . . 

1 + qBt/qA 
l --pAt/qA 

+ ( -  1) N I - q ; / q A  ) 
1 + PA t/qA 

(5.18) 



Phase Transition in a Four-Dimensional Random Walk 769 

and yielding the limiting distribution as N ~ 

PI(X) CC(pA/qA) x for x --= N (rood 2) (5.19) 

P 2(z, z, 1/ t )  is of course analogous. 
Suppose next that PA > 1/2. Then P i(z,z,t)  should yield a distribu- 

tion drifting away from the origin (one-dimensional) or diagonal (two- 
dimensional) at the rate PA - qA" NOW indeed the minimal singularity in 
P l(z, z, t) becomes a simple pole at t I + = t or 

1 (5.20) Z I ~  pat + qA/t  

expanding about which 

e (z,z,t) = d ( t ) / ( 1  - z / z , )  + . . .  (5.21) 

for suitable se'(t). We conclude that 

P l ( t )  = xzg(t)(p~t + qA/ t )u  + . . .  (5.22) 

But t in d ( t )  may be replaced by the maximizing value t o = 1 of IPA t + 
q./tl on the unit circle, so that 

e l ( 0  = Cl(e  + . . .  (5.23) 

precisely the generating function for a walk with probability PA to the right 
- - in  the one-dimensional picture. Without going into detail, it is clear that 
if pe < qB, the left distribution drifts to the origin, giving just one diffusive 
peak, with CI(pA,pB ) = 1, but if PB > qB there are two diffusive peaks, 
each drifting away from the origin, and C1(PA, PB) < 1. 

6. TECHNIQUES--FOUR-DIMENSIONAL PROTOTYPE 

We proceed now to the four-dimensional walk (2.1), (2.3), and corre- 
spondingly set up the generating function [converting the arguments of 
P(A,  B, a, b) to indices] 

P(z,  y , x , w )  = ~PAm,a,bzAyBx~ b (6.1) 

Introducing the tag t, we incorporate a vehicle for the condition (2.1) by 
extending (6.1) to 

P (z, y, x, w, t) = ~ irA, B,a,b Z Ay 8 x ~W 6t V(A,B,a,b~ (6.2) 

and further split this into MacLaurin and Laurent parts: 

e l(z, y, x, w, t) = ~ PA,B,a,b 0 ( T(A, B, a, b)) z Ay aX ~ bt T(A,B,a,b) 
(6.3) 

PZ(z, y , x ,w ,  1/ t )  = Z P A , B , a , b O ( T ( A , B , a , b ) ) z A y B x a w b t  T(A'B'a'b) 
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In order for the transition probability equation (2.5) to be directly express- 
ible in terms of p l and p2, it is necessary that 2~ A T(A, B, a, b)--and the 
other differences--be linear in A, B, a, b, i.e., that T(A, B, a, b) be at most 
bilinear, which is indeed the case for the "ethical" form (3.8). Here however 
we investigate a still simpler case. 

Suppose that T(A, B, a, b) is given by 

T(A, B, a, b) = b - a (6.4) 

In terms of the clinical trials context, this means that the drug that has 
failed the fewest number of times is used next, a procedure which in fact 
has been suggested, with various elaborations. The most obvious is to 
require that if b = a, then T = A - B: the more successful drug is used 
next. This has been analyzed in detail. (9'1~ Here, however, we stick to (6.4), 
in which case the transition probability equation becomes simply 

(1 - p . ~ z -  qAx / t )PI (x ,  y , x , w , t )  

+ ( 1 - P B Y -  qswt)p2(z,Y,X,W, 1/ t )  = 1 (6.5) 

As in (5.7), we multiply by t and conclude that 

I ( 1 - - p A z ) t - - q A x ] P l ( z , y , x , w , t ) = a ' + f l ' t + y ' f l  (6.6) 

Since IqAX/1 --pAzl < 1 in the allowed domain, the linear factor (1 -pAz) t  
- q~ x must divide the right-hand side, so that 

P l(z, y, x, w, t) = •' + / ; t  (6.7) 

Similarly we have 

e2(z, y,x,w, 1/t)= X" + ~"/t (6.8) 

If (6.7) and (6.8) are substituted into (6.5) and the condition P l(z, y, x, 
w,O) = P2(z, y,x ,w,0)  imposed, we find at once by equating equal powers 
of t 

X'-- X" --- (1 - paz)(l  - p ~ y ) / D  

tt' = q~w(1 - pBy) /  D (6.9) 

/~" = (1 -- pAz)qAx/D 

where D = (2 - p A z  - pBy)[(1 -pAz)(1 - p s y )  - qAqBXW]. Thus we con- 
clude that 

P l(z, y, x, w, t) = (1 - pAz + qBwt)(1 -- pBy) /D 
(6.10) 

P2(z, y ,x ,  w, l / t ) =  (1 -PBY + qAx / t)( 1 - -PAZ)/D 

That only t -  1, t o, t I can occur is obvious: a drug that has failed less is tried 
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until it fails as much as the other, and there is no way that la - b[ > 1 can 
occur. 

A typical characterization of this walk would be the asymptotic 
distribution of the excess failures, X = a + b - NqA when PA > Pc. Clearly 

P(2,O) ~ E PA,B,a,bZNe i(a+b-Nq'O0 

= P(ze-iqA~176176 ipA~ ) (6.11) 

so that the asymptotic form depends upon the smallest singularity of 

D - - [ 2 -  (p A +p,)ze  -iqA~ 

• 1 7 6 1 7 6  - qAq.zZe 2ieA~ (6.12) 

The roots occur at 

(zoe-iqA~ -~= �89 + p. )  + �89 (qA + q.)2 + 4q.qe(e2iO 1)]l/z (6.13) 

where u = - 1, 0, 1, and so the smallest has u = 1. The moment generating 
function PN(O) = coefz N in P(z, O) thus takes the asymptotic form 

PN(O) = sd(O)zo N (6.14) 

[Zo] is maximum on the unit circle e i~ at 0 = 0, at which z 0 = 1. Thus, 
d ( 0 )  = 1, and on expanding ln(zo) about 0 = 0, we find 

( qA- -qBiNO)exp(_2  qAqB [ 1 +  PAP~qAqB ]NO 2} 
PI~ ( 0 ) =  exp --qA qA +--'---~B qA +---~B (qA + qB) 2 

+ . . -  (6.15) 

showing that X diffuses with a drift given by 

~(N = N qA (PA -- Ps) (6.16) 
qA+qB 

There is no "phase transition." 
In the clinical trials context, the persistent relative failure rate (6.16) is 

hardly acceptable, and so (6.4) or its variants are used with an associated 
stopping rule. The testing is thus terminated at a finite stage and the 
nominally superior drug used thereafter. The analysis, however, is readily 
incorporated into (6.3) and is presented in another publication. 

, TECHNIQUES--ETHICAL STRATEGY 

The "ethical" strategy characterized by 

T(A,B,a,b)  = (A + l + e)(b + l + f )  - (B + l + e)(a + l + f )  (7.1) 
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can be treated, in principle, by the technique of the previous two sections. 
We have, for example, 

~aAA[ PAsabO( T(A ,B ,a ,b ) )  ]zAyBx~ T(A'B'a'b) 

= ~,p~sabO(T(A,B,a,b))zAyBxaybtr(A's'a'b)[1 -- ztaAr(,~+l,s,~,b)] 

= 2 PABab 0 ( T ( A ,  B,  a, b)) z Ay B x a W b t T(A,B,a,b)[ 1 -- z t  b +1 +f] 

= EPAB~bO(T(A,B,a,b))[  zAyBx~ r(A's'a'a) 

-- zt f+ lZAyBxa(wt)btT(A.B,a'b) ] 

and similarly for the remaining terms, so that the transition probability 
equation (2.5) then takes the form 

P l(z, y ,x ,  w, t) - zt f+ ~AP l(z, y ,x ,  wt, t) - xt - e -  lqAP l(z, y / t , x ,  W, t) 

+ PZ(z, y , x ,w ,  1/ t )  -- y t - f - IpAP2(z ,  y , x / t , w ,  1/ t )  

- -  wt e+ lqBP2(zt, y, X, W, 1/ t )  = 1 (7.2) 

Equation (7.2) is a bit more complicated than need be. We observe, 
however, that 

PABab A B a b = PhPs qJ qs QA Bab (7.3) 

where QA~b is a strictly combinatorial factor, the number of ways of 
arriving at (A, B, a, b). The corresponding generating function relation is 

P(z,  y , x ,  w,t) = O(pAz, psy, qAx, q~w,t) (7.4) 

and (7.3) transcribes at once to 

O 1(z, y, x, w, t) - zt f+ 1Q I(Z ' y ,  X, wt, t) -- x t - ' - 1 O  l ( z  ' y / t ,  x, w, t) 

+ Q2(z, y , x ,w ,  l / t )  - y t - f - ' Q 2 ( z ,  y , x / t , w ,  I / t )  

- -  w t  e + ' Q 2 ( z t ,  y ,x ,w ,  l / t )  = 1 (7.5) 

As a functional equation, not merely an algebraic one, (7.5) does not 
yield directly to a power series decomposition. A simple MacLaurin- 
Laurent separation is not possible because of the mixed powers of t and 
1/t, but this can be avoided by using only partial generating functions. For 
example, set 

QAB (x, w, t) = ~.  QABabXaWbt T(A,B,a,b) (7.6) 

with the corresponding QJB and Q~B- On taking the coefficient of z "y 8 in 
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(7.5), we thus have 

VA~(X,w, t  ) + GAB(X,W, I / t )  = 6AO6BO 

where 

x FA(X,W,t)= (1 IB+e+I )QIAB(X,W,t)-- t f+lal- lB(X,  Wt, t) 
(7.7) 

+e+1~o2 t x w 1 / t  ~ -  1 GAB(x,w, 1 / t )  = (1 - wt A l ~ A , ~  , , / ) ~ QeAs_l(X/t ,w,  1 / t )  

to which we append the boundary  condit ion 

QA1, (x,  w, 0) = QA2, (x,  w, 0) (7.8) 

FAa is seen to be of degree /> - B - e - 1 in t, GAB of degree < A + e + 1. 
Hence  we can write 

A + e + l  
FAB(X,W,t ) = • F ~ ( x , w )  ti 

i= -(B+e+ 1) 
(7.9) 

B + e + l  
GAB(X,W , 1/t)  = 2 G(Ai)B(X'W) t - i  

i= -(A +e+ l) 

and (7.7) becomes 

FJO(x, w) + G(A~i)(x, w) = 6A06e06~0 (7.10) 

Further,  taking the coefficient of t - (B+~+0 in FAB and of t a+~+~ in GAs, 
we have, respectively, 

FJ~ B-~-  O( x ' w) = - xQA B ( x, w, O) 
(7.11) 

G(B A -e-I)(X, W) = -- wQ2B ( x, w, O) 

reducing the boundary  condit ion to 

w F ~  (B+e+ 1)(x, w) = XGAB (A +e* 1)(X, W) (7.12) 

Our problem then is to solve the system (7.10), (7.12) for QABab subject 
to the condit ion that QA1B (x, w, t) is representable by a MacLaur in  series in 
t, Q.~B(x, w, 1 / t )  by a Laurent  series. The radii of convergence of these 
series are crucial. F r o m  (2.4) and (7.3), we see that 

~da oab ^ ~  -A + B+a+bp)pBA Bq~a qhb = 1/1 -- )~ (7.13) 

for  positive real arguments satisfying 0 < PA = 1 -- qA <<" 1, 0 < p~ = 1 -- 
qB < 1 and [)q < 1. It follows that  if It] < 1 and Ix] < ), < 1, Iwl < 2~ < 1, 
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then 

~ab QIBab X a W b t T( a ,B,a,b) 

<. Y, QLa~lxlatwl ~= ~ QLaY+~(IxI/X)~ 
ab ab 

= ( x -  Ixl)-~Q, -Iwl)-~Y, QJ~ab 
ab 

< ( 1  - h ) - l ( X  - -  I x l ) - ~ ( x  - Iwl) - ~  

In other words 

QJ~(x,w,t) is analytic in t for [t[ ~< 1 when Ixl < 1, Iw[ < 1 

and in similar fashion, 

QaB(X,W, l / t )  is analytic in t for Itl/> 1 when Ixl < 1, Iw[ < 1 

(7.14) 

(7.15) 

8. F IRST SPECIAL  CASE: PA = 1, f = 0 

The complete evaluation of QABab has yet to be carried out, but several 
special cases yield rather easily. We consider first that in which PA = 1 or 
q~ = 0. Then, according to (7.4), we need only the generating function 
Q(z,y,O,w) and hence only QJB(O,w,t), Q2AB(O,w, 1/t  ). In fact, in this 
case, both indices are unnecessary, and the intermediate generating func- 
tion 

Q~(y,O,w,t) = ~ QJ~(O,w,t)y ~ (8.1) 

and its analogs will be used instead. From (7.7), we have at once 

QJ(y ,O,w, t ) -  tf+'QJ_l(y,O, wt, t ) -  8A, o 

= (wt A+e+' - 1 +yt  - f - ' )  QJ(y,O,w, 1/t) (8.2) 

where both sides are polynomials in t of degree < A + e + 1. 
Now consider the equation 

Wt a + e + f + 2  -- t f + l  + y  = 0 (8.3) 
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corresponding to the polynomial factor of the right-hand side of (8.2). For 
0 with lu~ < 1, the remaining woO, there are clearly f +  1 roots u~ 

A + e + 1 having lull > 1, and application of Rouche's theorem to the unit 
circle extends this to a finite domain on (y, w) space. Thus writing 

A + e + l  
] 0 -- -- - -  Q~(y, ,w, t) t~+,Q~, , ( y , o , w , t , t ) ~ , o ] /  H (, .~) 

1 

f+  1 
= w 1~ (1 - u~ I/ t )  (8.4) 

1 

the left-hand side is analytic for It[ < 1, the right-hand side for [1/tl < 1 
[proved as in (7.14)]. We conclude from Dirichlet's theorem (11) that 

A + e + l  
Q~(y,O,w,t) - t f + l ~ l  "- ~A-I(f ,O,wt,t)- 8A,O = CA(y,w) H (t-- u~) 

1 
(8.5t 

[ f+  l 

1/0-- 1 n I , - , ~  

for some t-independent C A (y, w). Setting t = 0 in the first of (8.5), Q41(Y, 0, 
w,O) = 6 A o + II~+e+l( - u~)CA(y,w), and setting l i t  = 0 in the second of 
(8.5), Q)i'y,O,w,O)= CA(y,w)/w. Since QJ(y,O,w,O)= Q2(y,O,w,O), we 
thus find 

/ [  A + e + l  /~)] 
C A(y,w)=w6.,o 1 - w  H ( - u  (8.6) 

1 

Hence, setting t = 1 in (8.5), we recover the required pair of generating 
functions 

OJ(y,O,w) = wI-I~+'(1- u~) + 1 
1 -  wn~+, ( -  ~ )  

where 

•A0 
Qg(y,O,w) = H~+,( 1 _ u~ 1 _ wH~+'(- u~)] 

(8.7) 

wu.+f  +2 - uZ+' + y  = o, lull < 1, lull > 1, 
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or summing with z ", 

Q l ( z , y , O , w  ) _  w I-I~+1(1 - u~) + 1 

1 - 1 - w m  + ' ( -  4 )  1 - 
(8.8) 

1 l ( _  
Q 2 ( z ' Y ' O ' w ) =  I'Ilf+l(1 - uO)[1 - wl"I; + u~)] 

Finally, adding (8.8) and using the fact that wl'I~ + 1 (1  - -  u~ - 
u~) = w - 1 + y,  we have the full generating function 

Q(z ,  y ,O ,w)  = w - z + y + 1 (8.9) 
( 1 -  z)r[{+,(1 - u~ - wl- l~+l( -  u~)] 1 -  z 

The special case f =  0 has turned out empirically to be important,  (4) and 
simplifies matters materially. Inserting X A+s+a+b to generate the total 
number  of steps, and observing that if u - u0 ~ then w( - u)l'I~ + 1(_ u~) = y,  
we see that then 

P(zX,  yX, O, wX) = Q(z2t, pey)t, O, q~wX) 

where 

(qBw + PBY - z)X 
(1 - ~ ) ( 1  - u)(1 + p B X y / u )  1 - x~ 

+ - - 1  (8.1o) 

qB~kWld e + 2 -  U "[-pB~kV = O, [U] % 1 

Since PA = 1, qA = O, the number  of excess failures here is simply X = b. 
Thus the generating function for the number  of steps and number  of excess 
failures becomes 

y~ XNw~PN(X) = P(X,X, 0, wX) 
N,X 

q s ( w -  1) 1 
(1  - X) (1  - u ) ( 1  + p . X / u )  1 - X 

(8.11) 

qB~.WU e+2 -- U + _pB~t = 0 

TO see that there are two distinct parameter regimes, let us first ask for 
the limit of the generating function of the x-distribution as N--~ oo 

~ w x p o o ( X ) =  lim ~WXpN(X)  (8.12) 
N-~oo 
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We recall that  in general  

lim fN=fO+ ~ ( f n  -- fn- ,)  
N---~ co 1 

= lim f o +  ~ ( f n  - f . _ l ) ) t "  
)~-~1 1 

o r  

oo 

lira fN = lim (1 -- X ) ~  f~?n (8.13) 
N---~ oo X---M " 0 

Hence  mult iplying (8.11) by  I - A and letting A--> 1, 

(1 - w)q  
~ w x p ~ ( x )  = 1 - (1 - u)(1 +pB/U) (8.14) 

where 

q B W U  e +  2 - -  1.g "]" 1)B = O, lul ( 1 

But (8.14) is the generat ing funct ion of a distr ibution only if 

lirn ~ wXPoo(X) --- ~ P~(X) = 1 
w---) l 

and  hence only if the denomina to r  of (8.14) does not  vanish as 1 - w when  
w ~  1. I t  is easily shown that  the m i n i m u m  root  of qBwu e+2 - u + P B  = 0 is 
at  iul < 1 when w = 1 for  small e n o u g h p n ,  at  u = 1 for  l a r g e p s ,  with the 
crossover at  PB for  which a double  root  exists at  w = 1: qB ue+2- U +PB 
= 0 and  (e + 2)qBu e+l - 1 = 0, implying pB = e + 1 / e  + 2. Thus  

Poo(X) is a limiting distr ibution whenpB < e + 1 (8.15) 
e + 2  

and  all of the momen t s  of the m e a n  excess failures remain  finite, e.g., af ter  
a little a lgebra 

= 2 = wxP (x) w= 1 

= qB u[ + l + u [ + . . -  + u  l=pB/q8  (8.16) 
(1 - u,)(1 +pB/u,)  ' 

As a special case, 

qeZ for 0 ~< ~PB < 1 /2  (8.1V) if e = O, Coo (qB - -PB)(  1 + qB) 

IfpB > (e + 1 ) / (e  + 2), (8.14) is no longer the generat ing funct ion of a 
limiting distribution. Instead,  the distr ibution becomes  bimodal ,  and  a 
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portion goes asymptotically to infinity, thereby not appearing in the limit 
(8.14). According to (8.14), the normalization of this "trapped" mode is 
given by 

(1 - w)q~ 1 - (e + 2)q B 
/3 = lim = (8.18) 

w~l (1 - u)(1 + p , / / u )  2 -  q,  

To ascertain the nature of the trapped mode, we return to (8.11) and write 
explicitly 

E w X p N ( x ) = . , . , ~  (I - X)(i'=u)O TpBX//u) N + 1 
x 

(8.19) 

The singularities in X that dominate the large N behavior are poles at 
?h = 1, u(?~2) = 1 or ~2 = 1//(PB + qBW), and u()~3) = --)~3PB or h3 = (--2// 
1)~+IqBw) l/e+2, written in increasing order of magnitude. The pole ?~1 = 1 
describes the limiting component (8.14). ?~2 can reach 1 for w on the unit 
circle, but ]?~3[ always exceeds unity. Thus the residual distribution is 
described asymptotically by u = 1, h = 1/(PB + ql~w) �9 Since 

du PB + qB wue+ 2 1 
as u ~ l  (8.20) 

dX 1 - (e + 2)q~?~wu e+l PB -- (e + 1)qBw 

a residue evaluation of (8.19) yields at once the asymptotic form 

(1 - w)q~ 
PB>e+2e+ 1 : ~ w x p N ( X ) = l _  

x (1 -- u)(1 + pB//U) 

PB - (e + 1)qBw 
+ 2p B + qB w (pe + qBw) u+3 (8.21) 

(1)B + qBW) N is recognized as the generating function for a walk in which 
the walker has probability p~ of not moving, qB of moving + 1 to the right, 
precisely the probability distribution in the trapped mode, and the nor- 
malization--obtained by setting w = 1--which dominates at large N, is 
precisely fl of (8.18). 

9. S E C O N D  S P E C I A L  C A S E :  P8 = 0, e = f = 0 

The second special case we consider is that of PB = 0 or q~ = 1. Since 
the full machinery of Section 7 must be invoked, we will avoid unnecessary 
complications by choosing e = f = 0  as well. Now only P(z ,O,x ,w)  is 
required, and on dropping the constant B = 0 throughout (7.7)-(7.12) 
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reduces to 

F A ( x , w , t ) = ( 1 - t ) Q 1 A ( x , w , t ) - t Q ~ _ l ( x ,  wt, t ) 

Ga(x, w, 1/ t) = (1 - wtA + I'~] ~:SA I,[~2{ X, W, ] / t) 

(9.1) 

(9.2) 

and 
A + I  1 

V (x,w,O = rJ~ i, CA(x,w, 1/0  = Y, GJo(x,w)t 
-1 - A - I  

(9.3) 

FJ~ + G(A-i)(x,w) = 8A0,  wFCA-O(x,w) = xG~-A-O(x,w) 

Consider Eq. (9.2), written as (1/t)A+lGA(x,w, 1/t) = [(1/t) A+l -- w] 
Q)(x,w, I/t) .  The left-hand side is a polynomial in 1/t of degree A + 2. 
Since QA 2 is analytic around la/t l  = Iw] 1/A+l, ( 1 / t ) A + ' - w  must be a 
factor of this polynomial, and so Q~ must take the form 

QJ(x,w, 1/t) = CA(x,w ) + DA(x,w)/ t  (9.4) 

Setting 1/t = 0, we have CA(x,w) = QZ(x,w,O) = QIA(x,w,O ). But Eq. (9.3) 
tells us that xGJ-A-O(x ,w)= -wGJl)(x,w), and so, according to (9.2), 
D~ = xC A . We see then that 

Q2A(x,w, 1 / t ) = ( l + t ) Q 1 A ( x , w , O )  (9.5) 

and combining (9.1), (9.2), (9.3) 

( 1 -  t ) Q J ( x , w , t ) -  tQl l(x, wt, l)_1r ( 1 -  etA+')(1 + t )Q~(x,w,O) 

= 6a0 (9.6)  

An exchange of arguments and indices is now useful. If 

9~ (z, x, t) = ~ Q~oabzAxat rr (9.7) 

and similarly for 9 2 and 9 ,  then on summing (9.6) with z A and taking the 
coefficient of w b, we have 

(1 t 

(9.8) 
Now if x > 0, z > 0, x + z < 1, then Ix - t] > Iztb+2[ on the unit circle 

I tl = 1. It follows from Rouche's theorem (10 that 

Zt b+2 - -  t + x = 0 (9.9) 

has precisely one root, which we call tb(X,Z), satisfying [tb[ < 1. Since 
9~(x,z , t )  is anlaytic for It I < 1, this implies that the right-hand side of 
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(9.8) vanishes at t = tb: 

t___p__b 8b0 (9,10) ~ ( z , x , O )  - t b ~ _ l ( z t o  , x , O )  = x + tb 

and hence that 

~ (z ,  x ,  O) = t o / ( x  + to) (9.11) 

~ l ( z , x , O )  -- t o ~ _ l ( z t  o ,x,O) for b > 0 

If we now choose 

1 - x/~c (9.12) 
Z - -  - -  

T b + l  

where �9 is near x, then t o ( x , z  ) = % and so 

~01( l-. _x/'r , x , O ) -  "c 
"r x + 1 "  

(9.13) 

with the immediate solution 

/ t -fo-~ ,x,O = ~o~j ; ,x,O = ,?+1Ix + 

Hence choosing ~- -- t 0 (x, z) yields the desired 

~ ( z , x , O )  = t b + ~ / ( X  + to) (9.14) 

It follows from (9.5) and (9.8) that, on letting t ~ 1, 

l + x  tbb+l ~ 2 ( z ' x )  - t o 7+ x 
(9.15) 

~b~(z ,x)_ l + x  ( tb b+' tbb-' ) 800 
z - - - 1  x tb + x to_~ + x z -  l - x 

The single controlling parameter in this special case is PA, but its 
influence is only qualitative, with no "phase transition" being evoked. 
Consider the mean excess failures, given according to (3.3) and (7.4) by 

b = 0  

(9.16) 

p~xt# + 2 -  t0 + qAX = 0, Itol < 1 
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Consequently, 

C~ =pA(1 + qA) lira ~ Xb+lt~+l/(tb + q~X) (9.17) 
"X---) 1 b=0  

Indeed, if t 0 behaves suitably as ~---) 1, the limit ~ ~ 1 can be taken term by 
term. We have seen, in the discussion of (9.9), that t b < 1 when pAJk + qA~ 
= ~ < 1. On the other hand, when ~ = 1, fb(t ) ---p,t  b+2 - t + qA = 0 does 
have the root t = 1. The question is whether t = 1 is the smaller or larger of 
the two positive roots when ~ = 1. But fb(O)> 0, f0 (1)=  0, SO that the 
condition for a root 0 < t 0 < 1 is that f/(1) > 0 or (b + 2)p A - 1 > 0. Hence 

( = 1  if b + 2 {  < 1/pA (9.18) to < 1  >l/p~ 

Further, it is clear that at ~ = 1, t 0 ~ qA as b ~ m. Thus we can reduce 
(9.17) to 

Co =pA(1 + qA)2tb~ + qA) 
0 (9.19) 

pAt~ + 2 -  to+ qA = 0  

which converges for all PA > 0. We conclude that the asymptotic mean 
excess failures remain finite for all PA > 0, implying a distribution concen- 
trated about a repeated step of (PA, qA) in the (A, a) direction. There is no 
transition to a two-phase region. 

10. SOME CONSIDERATIONS IN THE GENERAL CASE 

Solution of the general walk with "ethical" treatment function, e.g., in 
the form (7.7)-(7.12), seems feasible, if complicated, but has yet to be 
accomplished. It is not difficult, however, to develop iterative approxima- 
tions based upon the solved special cases. In particular, since the original 
motivation was to operate preferentially in the low mean excess failure 
region, it makes sense to expand about the point PA = 1, PB = 0 at which 
this quantity attains its absolute minimum. For this purpose, we may 
rewrite (2,5) as 

_ _ / , 2  = 8~Ba0,0000 + ( "B,a- ' ,b  ~ - , , , a 0  ) PABaO P~ - I,BaO ABo,b- 1 qA e l _ e I 

"Jc'l)B(e2B_l,ab- e2Ba,b_l) (10 .1)  

and carry out an expansion with respect to qA and ps, not trivial due to the 
nonconstant coefficients implicit in P~ and P 2. In the no-bias case, e = f 
--0,  we have already analyzed two lines in the (qA,qs) plane: (8.17) 
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expands out to 

C~(O, pB) = ( 1 -  p~)( �89 + 3 p~ + ~ p~ + 43 p~ + . . . (10.2) 

and (9.19) to 

Coo(q A ,0) = (1 - qA)(�89 +-]qA + ~q2 + . . .  ) (10.3) 

The cross-terms however must be picked up by laborious application of 
(10.1). 

After a fair amount of routine algebra, (10.1) with boundary condi- 
tions (10.2), (10.3) can be expanded through second order, resulting in 

C o o ( q A , P . ) = ( p A - - p . ) ( � 8 9  + 3  p .  +-]qA +~- (p~  + q2)+ 2--2 p . q  A + " ' ' )  

(10.4) 

Even at this early stage in the expansion, significant information can be 
extracted. For this purpose, we use a Pad~-type rational fraction representa- 
tion, most easily done by introducing an expansion parameter 3,: PB ~ )'P~, 
qA -~ "{qA and then converting the ),-series to a continued fraction: 

a), [a + ( a 2 -  b)), + ' ' '  ] 
l + a ) , + b ) , 2 +  . . . .  1 +  + . . . .  

1 - ( b / a ) ) ,  ( a -  b y . . .  ) 

In the present case, this yields 

3 n .J_ 5,,~ __ 1 ~ 2  ..L 7 ~ 2  1 ~ r ~ - - ~ A  - ~ t ' B - - ~ A - - 3 p B q A ' ' "  
C o o ( q A  , 1 )B)  = "2 (1)A - -  P B )  3 -n--~f-5--~"--_.._"'~l- '~ - -  ~ ~ - 

~r~ - ~uA ~ t ' 8 -  TqA ~PBqA " 

(10.5) 

which, taken literally, implies that the transition curve, on which Coo first 
becomes infinite, is given by 

3Ps + ~qA -- ~ p 2  _ ~q2  _ ~PBqA . . . .  0 (10.6) 

In fact, this curve, given in Fig. 3, is indistinguishable from that obtained (4) 
from a numerical simulation involving 100 walks of 1000 steps at each 
point of the (PA, PB) grid with grid spacing 0.1. 

Numerical simulations have also been carried out (4) for a number of 
walks with nonzero bias and are responsible for the typical phase diagram 
of Fig. 4. However, even the series expansion technique above becomes 
rather involved for such cases. Although continued investigations of this 
kind have obvious importance in the context of clinical trials, they seem not 
at this stage to add substantially to the conceptual development of phase 
transitions in random walks. The prime necessity is rather that of construct- 
ing simple models which illustrate the facets of the phenomenon more 
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completely and which aid in the development of more powerful approxima- 
tion techniques for their analysis. We intend to proceed in this direction. 
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